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Dipole radiation in a one-dimensional photonic crystal: TE polarization
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We study the power emitted by an oscillating dipole in a superlatStg modeled by means of a periodic
distribution of Diracé functions(Dirac combSL). The radiation is permitted to propagate in all directions in
space; however, it is restricted to the transverse ele@ig polarization mode. The calculation is based on a
classical theory of radiation in nonuniform dielectric media by Dowling and Bowédrys. Rev. A46, 612
(1992]. The emitted power is derived in terms of a single integral, with no approximations. A SL has no
omnidirectional photonic band gaps, and therefore the power is always finite. The power spectrum exhibits
slope discontinuities, which occur at the band edges for on-axis propagation. It also depends strongly on the
dipole’s position in the SL and on thgrating strengththat characterizes the Dirac comb model. The power
peaks for low frequencies, and there can be large enhancement of emission as compared to free space. The
closer the dipole is to barrier (Dirac 8) and the greater the grating strength, the stronger the enhancement is.
These conclusions are expected to be relevant for a real SL.
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[. INTRODUCTION periodic array of(usually two dielectric materials. In the
case of a three-dimension@D) PC, appropriate geometrical
In a pioneering paper, Purcell pointed out that the sponeharacteristics and sufficiently large dielectric contrast be-
taneous emissiofSE) by an atom is altered if the radiated tween the two constituent materials may result in an omni-
field is constrained to satisfy a set of boundary conditiondirectional photonic band gafPBG). This is to say that,
[1]. In other words, the lifetime of an excited atomic statewithin the PBG, light is prohibited to propagate in whatever
changes if the atom is located in a material environmentdirection. Strictly speaking, this would require perfect peri-
rather than radiating in free space. Consider, for example, apdicity (including an infinite P¢and lossless materials. Un-
atom enclosed in a loss-free cavity. It is well known thatder such ideal conditions, as proposed by Yablonovitch, SE
such a cavity supports a series of eigenmodes whose charague to electron-hole recombination in a semiconductor—
teristic frequenciesv; ,w,,... depend only on the geometry incorporated within the PC—could be prohibited provided
of the cavity. If none of these frequencies matches(ffee-  that the recombination frequencyhich is just the semicon-
space emission spectrum of the atom, then it will find no ductor’s energy band gap, divided by Planck’s congteails
eigenmode to decay into. The atom will then be unable tawithin the PBG[5]. This could greatly improve the perfor-
radiate. More generally, if the material surroundings are suclmance of semiconductor lasers and other devjégslt is
that the modal densitgor density of optical statgvanishes, worth noting that the spontaneous emission rate due to
then the spontaneous emission is prohibited. If the density aflectron-hole recombination in a GaAs film was found to
stategDOS) is merely reduced with respect to the free spacedncrease or decrease markedly, depending on whether the
value, then the spontaneous emission is inhibited. On theubstrate dielectric had a higher or lower refractive index
other hand, an enhancement of the emission is also feasiblghan that of GaA$6].
This is the essence of the Purcell effect, and it has stimulated John and Wang studied SE by an atom whose transition
the development of cavity quantum electrodynanii@&€D)  frequency lies near a PB{¥]. Their QED theory predicts
dedicated to radiative properties of atoms between two mirbound states of photons to hydrogenic atoms, namely,
rors or within other cavities. We quote two reviews of this “dressed atoms.” In the vicinity of a photonic band edge,
field [2] and a few recent papef8]. the excited atomic state undergoes an anomalous Lamb shift
Photonic crystal$PCs [4] are novel, composite materials (due to the electron’s interaction with the radiation fjedad
that offer an attractive opportunity for studying SE by atoms,splits into a doublet. One member of this doublet gives rise
fluorescence by dyes, radiative recombination of electrong the aforementioned “dressed atom,” with the electromag-
and holes, etc., in a very low DOS environment. A PC is anetic energy decaying exponentially away from the atom.
The other member leads to fluorescence which, according to
Kofman et al,, is characterized by the occurrence of beats,
*Present address: Dept. of Electrical Engineering, University ofcorresponding to a non-Lorentzian emission spectf8in
California at Los Angeles, Los Angeles, CA 90024-7594. Several other studies explore the decay of a two-level atom
"Email address: halevi@inaoep.mx in the presence of a PBf®]. The radiative coupling of two
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atoms or dipoles has been investigated by Kurigk®], ing [24] applied transfer matrix methods to the DB result in
Dowling and Bowden11], and Wang[12]. Further, John order to calculate the power emission by a dipole in a finite
and Quang found that the collective SEMywo-level atoms SL. Tocciet al. also compared their calculations to sponta-
inside a PC leads to the localization of superradiance near @eous emission spectra of a GaAs thin film at the middle of
PBG[13]. It was also shown by John and collaborators thata AlAs/Al,Ga _,As SL. They obtained reasonable agree-
the SE by a three-level atom, with one resonant frequencynent and enhancement by a factor 3.5 near the photonic
near a PBG edge, can be coherently controlled; this may bleand edgg¢22]. We also mention early work by Bykd25]
relevant for an optical memory device on the atomic scaleand calculations by Russeklt al. [26] that shows how SE
[14]. Huanget al. investigated dressed states for a multilevelcan be controlled by placing a dipole inside a layer of low-
atom and localized field in a PL5]. index material, built into a dielectric Slboth TE and TM
The aforementioned theoretical wofK—15 considers, modes are consideredBabiker and collaborators considered
by and large, strong coupling between the atom inside the P& SL made up from dispersive layers, modeled so as to allow
and the electromagnetic field. As a result, so-caRedi os-  for the presence of phonon polaritof7]. They found that
cillations take place: for a two-level atom in a cavity, the the dipole relaxes by exciting TM-polarized polaritons local-
probability of either state being occupied depends harmoniized at the interfaces between the layers.
cally on time(the period of the oscillations is thRabi fre- Turning to PCs of 2D periodicity, Suzukt al.embedded
quency [2,16]. What happensgin the idealized absorption- a radiowave dipole oscillator in a periodic array of dielectric
less situatioh is that the excitation energy is exchangedrods[28]. They obtained quantitative agreement between the
periodically between the atom and the field. Such a state aheasured emitted power and a calculation based on the DB
affairs requires complicated QED theories, complete withtheory. Recently, SE from hexagonal microcavities sur-
creation and destruction operators. On the other hand, th@unded by triangular arrays of holés a membrane struc-
experiments performed to date on P@Gse belowseem to  ture) was observed by Leet al. [29] and by Boroditsky
involve only weak interaction between the emitting particleset al. [30] at a wavelength~1.5 um. In both, rather similar
and the field. Then the so-called Weisskopf-Wigner approxiexperiments, the active regions—&g, _,As quantum wells
mation[17] is applicable, which results in great simplifica- (that constituted the cavipwere pumped by lasers and
tion, namely, the decay process becomes exponential in tim@hotoluminescence spectra were taken for light emitted per-
This point was emphasized by ket al. [18], who very re-  pendicular to the membranes. Twofd@B] and sixfold[30]
cently computed the “local” DOS(that incorporates the enhancements of the light extraction efficiency were demon-
atom-field interactionfor a two-level atom embedded in a strated in comparison to the unpatterned membrane. Baba
3D PC. On the basis of realistic band-structure calculationsgt al. also observed strong enhancement for GalnAsP micro-
the authors concluded that the local DOS varies slowly neagolumn array§31].
the band-gap edges—in contrast to the previous isotropic As for 3D structures, Suzuki and Yu modified the DB
model [7]. This behavior seems to justify the Weisskopf- method in order to calculate the emitted power of a dipole
Wigner approximation for 3D PCs. Glauber and Lewensteirinside a PC with face-centered cubic struct[82]. The re-
used this approximation in order to calculate the rate okults show prohibition of emission in the PBG and also
spontaneous emissioyy of an atom embedded in a nonuni- strong enhancement near the band edges. On the experimen-
form dielectric medium, characterized by an arbitrary,tal side, there are many papers on self-organizing micro-
position-dependent dielectric constasft) [19]. It turns out  spheres, made of polystyrene or siliGtificial opa), that
that the emitted power is independent of Planck’s constangrystalize in diverse space latticgg3]. These dielectric ma-
hence it actually corresponds to semiclassical radiationerials have small dielectric constants, so there is no omnidi-
theory. Then one can expect that a classical theory of radiaectional PBG, but only a pseudogap. Therefore, when doped
tion by a point dipole, with its dipole momept replaced by  with a fluorescent dye or a semiconductor, these PCs exhibit

the atomic dipole transition matrix elemetm|er|n) will merely moderate inhibition of SE. What makes them attrac-
lead to the very same results. Such a theory, for arbitraryive is that this occurs in the visible regime.
€(r), was developed by Dowling and BowdébB) [20] In this and the next papdB4] we calculate the power

and, indeed, the replacemept—({m|er|n) in Eq. (26) of  emission, by an oscillating point dipole, in a perfect SL. The
Ref. [20] leads to the expression fotwyys derived by SL is modeled by means of a periodic distribution of Dirac
Glauber and Lewenste(isee Eq(6.113 of Ref.[19]] within delta functions—the Dirac comb model. As mentioned be-
a numerical factor. fore, this elegant model was first introduced in the DB paper
DB applied their theory to the calculation of the power [20]. There, however, the light was restricted to propagate
emitted by a point dipole located between a pair of perfecalong the SL axis. In practice, a dipole or an atom will radi-
mirrors and also to a dipole embedded in a superlattg  ate in all spatial directions, and here we generalize the DB
that was modeled by means of Dirac-delta functigbgac  calculation so as to allow for this feature. We employ the DB
comb model. In both examples the radiation was assumed tdheory, which expresses the emitted power in terms of the
propagate in the axial direction, corresponding to normal innormal modes of the system. For a SL, these are the TE and
cidence[20]. The calculation for dipole radiation within the TM modes; the corresponding eigenvalue problems for the
mirrors was generalized by Alvarado-Rodrigusizal. to al-  Dirac comb model were solved by Alvarado-Rodrige¢al.
low for arbitrary direction of propagation and polarization [35] and Zurita and Halev[36]. In these two papers we
[21]. Further, Tocciet al. [22], Fogelet al.[23], and Dowl-  derived the band structures, fields, equifrequency surfaces,
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and the DOSs for the two polarizations. These results will be )

used in the calculation of the power emitted into the TE j dsff(r)akrpr(r)'akp(f):5(k—k')5ppr, 5
modes(this paper and into the TM modeénext paper[34].

We also calculate the power emitted by a gas of dipoles 2

within the superlattice. In general, the calculation of power > d3ka;p(r’)akp(r)= S(r—r’). (6)
emission by a dipole or an atom embedded in a PC is a p=1

difficult problem. The Dirac comb model, while unrealistic

from the quantitative point of view, has the advantages of\.IOte that b(;)th sides of ;he IESt equation are d%adlcs. Ecllua-
simplicity and transparency. In fact, exact final results ard'ons (5) and(6) ensure that they(r) are a complete set 0

derived in terms of a single integration. orthonormal funcnons. .
In Sec. Il we briefly review the DB theory for radiation in I_\Iext,_ the inhomogeneous wave equation for a source lo-
an arbitrarily inhomogeneous dielectric medium. The result$alized in space must be solved,
of Ref. [35] for the TE modes of the Dirac comb SL are e(r) &2 4
recapitulated in Sec. Ill. The electric field is normalized in VXVXA+— —5A=—5J. (7
Sec. IV, and in Sec. V we calculate the emitted power. Spe- Jt ¢
e e 2 92 T APSere (1) s currnt density cortesponding 0 @ ponike
. ipole, namely,
sented and analyzed in Sec. VII.
J(r,t)=woucog wpt) 5(r—ry)O(1). (8)
IIl. POWER EMISSION IN AN INHOMOGENEOUS
MEDIUM The dipole has a moment, is located at the pointg, is
oscillating with frequencywy, and is turned on at the time
%=0, as evident from the step functign(t). Equation(7)
can be solved in terms of the normal modes as given in Eq.
(3), and then one can calculate the work done by the dipole
current against the ambient electric field to find the radiated
power. Following the procedure in R¢R0], the power ra-
(r) 8 diated by the point dipole in the steady state is

€
VXVXA-F?PA:O. (1)

In this section we recapitulate the modal radiation theor
of Glauber and Lewensteifil9], according to its classical
rendition by Dowling and Bowdeh20]. We start with the
wave equation for the vector potenti(r,t). In the absence
of sources, it is

2
P=mwiu?> fd3k|ak (ro)- *8(wp— o),  (9)
Here the dielectric constae(r) is a function of the position = P P

vectorr due to the inhomogeneity. The vector potential ful-

fills the Coulomb or transverse gauge where i is a unit vector parallel tqu. Equation(9) implies
that the power emitted by the point radiator depends on the
V-[e(r)A]=0 (2) normal modes being excited. The Dirafunction selects the

modes that have the frequency of the radiator and therefore
rather thanV-A=0 as in an homogeneous medium. For acontribute to the radiated power. The total power can be
given material geometry, we can describe the field therein agecomposed into independent contributions from each polar-
a linear superposition of normal modes or eigenmodes. Eadlzation mode. Hence one can study separately the contribu-
mode may be labeled according to its wave vedtoand tionsp=TE andp=TM. Because this paper is restricted to
polarization indexp. So, the total monochromatic field the former case, we can drop the mode ingex
present in the medium is given by

IIl. TE NORMAL MODES

A(r,t):Ep ; ayp(r)exp —iwypt) 8(wgp—wo).  (3) We consider a dielectric SL modeled by means of the
Dirac comb[20], Fig. 1:

Here w,, anda,,(r) are the eigenfrequency and eigenvector
of thek,p mode. The Dirad function ensures that the fields
oscillate only at source frequenciasg, that the inhomoge-
neous medium can admit, namely the eigenfrequenajgs
These normal modes are monochromatic solutions of thélere d is the period of the latticeg is the *grating
Helmholtz equation, obtained by substituting E8). in Eq.  strength,” andeg is the dielectric constant between the “bar-
(1) riers” located atx=nd. Formerly we derived the following
dispersion relation for the TE propagation mo¢l25s]:

e(x)=e€y+gd Z_ 8(x—nd). (10)

2

Wy
VXV Xayp(r)— —Czp e(r)agp(r)=0. (4) coskgd=cosKd— a(w,K)sinKd, (12)
The eigenvectorg,,(r) also have to fulfill the normalization K= w’ — K2 12
. . . . i =|—=2 €0 I ’ (12)
and closure conditions given by the following equations: c
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. Wk
Ek(r)=lFak(r), (18

and using Eq(14) we have that

c . i
a&n)(r) =—j w_elnde[Ae|K(xfnd)
k

—iK (x—nd)7 i (kyy +Ky2) 2
FIG. 1. Oscillating dipole in a Dirac comb superlattice; the di- +Be Kxndeltlyyriany (19

electric constant is infinite on the periodically situated plares

=---—d,0d,..., and it isequal toe, between these planes. The Written out explicitly, the normalization condition E¢5)
dipole momentu lies in thexy plane and forms an anglgwith the becomes

y axis; the point dipole is distanceq from the origin.

o 0
gdwz ...+J7°Cdydz 7ddXEOa:(Tl)*,aE<71)
a(w,K)= 52K - (13
7 dydz[ "dxeca®* 40
Equation(11) is an implicit equation for the frequency e y 0 03 " &

=w(kg k), as a function of the Bloch vectd and the
wave vector componer; in the plane parallel to the barri-
ers. The corresponding band structure reasonably resembles
that obtained from the realistic model of the SL, see Fig. 2 of

© 2d
+J dydz| dxea*-al+---=8(k—k').
— % d

Ref. [35]. (20

The electric field of the TE mode is perpendicular to the ] ] ) ]
SL axis and was found to be By using the phase factor expkgd) in Eq. (19), this can be

reduced to an expression that involves only the oelO,
Ef(n)(X) — einde[AeiK(x—nd)+ Be—iK(x—nd)]ei(kyy+ kzz)éK , and we get
(14
* . ! * d
&= —§cosp+ 2sine. 15 € > e'““B‘kB)df ddefo dxal)* -8l = s(k—k').
n=—ow — 00

Hered, is the polarization vector, that is, it is a unit vector in (21
the yz plane that is perpendicular tk,, which forms an , . )
angie ¢ with the z axis. This equation gives the field at any Next we substitute E¢19) in Eq. (21). The integrals ovey
point x between thenth and the A+ 1)th barriers, namely, andzlead to 2”5(ky_|f§) and 2m5(k,—k;), respectively.
Because>__..e"ke~ke)d=2 7 5(ky—kg)/d we obtain, for
nd< X<(n+ 1)d (16) real K, that

Finally, the amplitude#\ andB are related as 3 2
(2m)° ¢ d 2 2 * 1 o 2iKX
B 1— @i(K-kg)d Tw_ﬁeo 0dX|:|A| +|B| +2 RA*Be )]
K:_ 1_eii(K+kB)d. (17) ' ’ ’ ’

X 8(kg—kg) 8(ky—ky) o(k,—k;) = o(k—K"). (22

Note thatK, defined by Eq(12), may have imaginary, as ] ) ] ] )
well as, real values. IK=i|K|, as occurs for sufficiently Canceling out the Dirad functions and integrating we

large values ok, then in Eq.(11) the trigonometric func- find that
tions of Kd must be replaced by the corresponding hyper-

bolic functions of|K|d. The parameter(w,K), Eq. (13), AZ+[B2+2 R A*Be’z”“’—l _ wp

becomesx(w,|K|). In this regime of imaginar¥, the elec- —2iKd | (2m)3c%¢y’

tric field, Eq.(14), has evanescent behavior exgi|x). (23
IV. MODE NORMALIZATION Then substituting Eqg11) and(17) into Eq. (23) the result

is
To proceed with the power calculation the eigenvectors of

Eq. (14) have to be normalized. Now, the formula for the 2 . .

power, Eq.(9), requires the vector potential; we relate it to |5|2= 0;"2 S'an+aCOSKd+S'r]_de . K real.
the electric field using the gauge E@) which, in the ab- 16m°c%eq Kd Kd sinKd

sence of charges, implies that the scalar potential vanishes. sinitd+ a coskd—a Kd

Then (24
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If, on the other handK is imaginary, then we must re- Here “wy” means that the integrand is evaluated on the

place expfiKx) in Eqg. (19 by exp(|K|x). Retracing the

equifrequency surface. The derivative preceding the square

steps leading to Eq22), the expression in the square bracketbracket is found to be

is replaced by
[|A[2e~ KX+ |B|2e?KIX+ 2 RgA*B)].
After integration overx, we obtain

w? a(sinHK|d+ coshHK|d)

2_
Al 16m°c%eq sinhK|d’
sinfK|d— acosHK|d+aW

K imaginary. (25

Here « is given by Eq.(13), with the replacemerk — |K]|.

We note that Eq(25) cannot be obtained from E{R4) by
the substitutiorK =i|K]|.

V. EMITTED POWER

To calculate the power radiated into the TE polarization
mode, we use Ed9). Now we take the medium between the
barriers to the vacuume=1). This is in order to avoid the

complications due to thiocal field acting on a dipole within

IK

wO”(U [3

kg
9K

o F(o,K(wk))

=K sinkga ' %Y
I

dks kg
do ~do),

F(w,K(w,k))=(1+g)sinKd

sinKd
+a(w,K) COSKd—W). (30

Next we evaluate the expression in the square bracket,
assuming thakK is real. Using Eqs(23) and (24), after te-
dious algebra we get

[|A]>+|B|*+2 ReA*Be ™ #K¥0)]

w?  sinKd—2a sinKx sinK(d—xg)

~ 873c2 (

(31)

a .
1- K_d) sinKd+ «a coskKd

In the regime wher& is imaginary, we have to use Eq.

a dielectric medium. Without loss of generality, we assumg2s) instead of Eq. (24). The algebra is different,

that the dipole moment is parallel to tlxg plane, namely,

p=Xsiny+y cosy, and that it is located within the cell la-

beledn=0 at a distancey from the barrier(see Fig. L
With the help of the Eqs(19) and (15 we find that the
dipole-field interaction is given by
c?
|a(ro)- il *=—[|A[>+|BJ?
Wy
+2 RgA*Be 2%%0)]cog i cos ¢.
(26)
In cylindrical coordinates k= (k;,#,kg) and d3k
=(k,d¢)dk,dkg. Then Eq.(9) becomes
2.2 2 dkg 2
P=m?c2u?cod sz dk”kHJ dwd_wj d¢ cog [ |A|

+|B|?+ 2 RgA*Be 2'%0) | 5(wy— wg). (27

nevertheless—rather surprisingly—the result is the same as
Eq. (31) with the replacemeriK—i|K|. Hence it is not nec-
essary to separate the integration in E29) into the regions

of k; smaller and greater tha@/c. Then substituting Egs.
(29) and(32) in Eq. (28), our final result is

k|F (@, K(wg,k)))|
|K sinkgd|

plwg
P cog ¢f dk;

pP=

sinKd—2a sinKxg sinK(d—Xg)

(32

a -
(1— @> sinKd+ « coskd

Here K, o, and F are defined, respectively, by Egd?2),
(13), and (30) with w=wq, and sirkgd is calculated from
Eqg.(11). The Bloch wave vectdkg must be real, which is to
say that the region of integration must be limited to the val-
ues ofk; within the pass bands. Note that the calculation, up
to this point, is analytic, and that the desired power is given

For the Diracs function in the integrand we use the property i, terms of a single integration.

O(X—Xp
00=3 Tt

Xn

wherex, are the zeros of the functiof(x). For a givenk,
there are two valueg kg for which w,= w, (see Fig. 3 of
Ref.[35]). Then integrating ovekg and the anglep, we get

dk
P=277302;L2 0052 lﬁf dkkd_wz [|A|2+|B|2

+2 RgA*Be 2"%0)],, . (28)

Equation(32) gives the powelP radiated by a dipole of
frequencywg, into the TE modes of our model SL. This
formula render® as a function ofv, the grating strength
that characterizes the SL, the distance of the dipgl&om
one of the “barriers,” and the angl¢ that the dipole forms
with the plane of the barriers. This last dependence is given
simply by the factor cdsy outside the integral. Then, as can
be expected, no TE radiation is emitted if the dipole is par-
allel to the SL axis. It is convenient to work with the nor-
malized dipole positionxy/d, the normalized frequency
wpd/c, and the power normalized with the power emitted by
a dipole in free space 3/ u?wg)P.
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A. The limit g—0

PHYSICAL REVIEW E63 056613

sible directions in space of the dipole momentthat is over
the angles. This simply replaces the Tgsn Eq. (32) by its
volumeaverages.

This limit corresponds to the empty-lattice model, and the We also average over the dipole positians For the

dipole is actually radiating in free space. Fpr~0 we have

that «—0 and sirkgd—sinKd. The equifrequency surface

becomes a sphere of radillg =wy/c, and the integral of
Eq. (32) reduces to

f dk k—fwomdk K _ oy
I K B H\/m Pt
Then the normalized power becomes

P 3¢ wlod

wqo 3
P—Oﬁﬂz—ct)éwcos’-zp?—zcosz lﬁ (33)

In the planned sequéB4] to this paper we will see that, for
=0 and ¢= /2 this just completes the total—TE plus

TM—radiated power td®/Py=1, as it should be.

B. The limit w—0

position-dependent factor in E€32) we find that
(sinKd—2a sinKxq sinK(d—Xg))
=sinKd+ a cosKd— a(cosK(d—2xg))
=sinKd+ a cosKd— a sinKd/Kd.

This just cancels out a factor in the denominator of the inte-
grand. Then the final result for the radiated power per dipole
is

_j kH|F(w01K(w01ku))|. (36)

" K sinkgd|

VII. RESULTS AND DISCUSSION

The integration in Eq(32) must be carried out carefully,
for every value ofwg, in coordination with the correspond-

In this low-frequency limit, we can see from the banding equifrequency surface. These are given in IR&8] (Fig.

structure(Fig. 2 of Ref.[35]) thatk, andkg are also very
small. Therefore, wod/c<1, kgd<1, and Kd<1, and

3) for g=0.1 and four selected frequency values. Of course,
the integration is to be interrupted whenever a gap occurs in

F(wo,K(wg,k)))=(1+g)Kd. Further, a series expansion of k,, and the limiting points must be approached carefully, in

the dispersion relatiofil1) reveals that, in this limit,

ki+k?=(eo+g)w?/c?. (34)

small steps. This is because kid in the denominator of the
integrand vanishes at all the band edges. Nevertheless, this is
a weak singularity, and the integral converges. Specifically,
for a givenw, one or more bands,(k;) are traversed; these

The equifrequency surfaces are again spheres, now of radigge separated by band gaps, namely, regiors &dr which

(€0+9)Y?w/c. Then (with e;=1) the integral of Eq(32)
reduces to

kH y“ng(a)o/C)

(1+9)f dknk—B:(lJfg)fo
% kH

[(1+g)w?/c?—kf]H?

_ 3/2%0
(1+9)" -

Taking into account the prefactor of the integ{@®) and the
normalizing divisorP, [see Eq(33)] the result is

E*}§(1+g)3/2C0§ .

Po 4 (35)

This, of course, reduces to E@3) for g—0.

C. Gas of dipoles

the characteristic equation has no real solutions for the Bloch
vectorkg (see Fig. 2 of Ref[35]). The integration is then
performed separately for every band, as defined by the initial
(k;) and final ¢) values ofk; for that bandn. We have
divided the range§k{™—k{™]d into 1 equal intervals
(Ak)); the integration was executed from the valki®d
+ Ak, to the valuek{"d— Ak, (the pointsk!™d and k{"d
themselves were excluded because of the aforementioned
singularity).

In Fig. 2 we plot the normalizedto free spackpower
radiated by a point dipole whose dipole momgnis parallel
to the barriers ¢=0). Three positions of the dipole are
considered, namely, when it is at one-half, one-third, and
one-quarter of the barrier separatidn For each of these
cases the grating strengghassumes two values 0.1 and 0.9,
giving rise to relatively weak and to rather strong Bragg
diffraction, respectively. First let us note that, in comparison
to the caseg=0.9, the pattern is rather flat fgg=0.1, and
oscillates near the valu®/P,=0.75, independently ab and
Xo- This value, in fact, was derived analytically in the limit
g—0 in the previous section. In the same section we also
found the low-frequency limitP/Py=0.75(1+g)*? for ¢

Here we assume that a random gas of radiating dipoles O which, forg=0.1 andg=0.9, assumes the values 0.865
fills the spaces between the barriers. In order to obtain thand 1.964, respectively. In Fig. 2 we see that these limits are
radiated power per dipole, we have to average over all possbeyed, indeed, irrespective of the valuexgf
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FIG. 3. As Fig. 2, for dipole positions very close to a barrier.
FIG. 2. TE-polarized power radiated by a dipole in the configu-The peaks correspond to strong enhancement, which is greater the
ration of Fig. 1, as a function of frequency. The frequency is nor-closer the dipole is to a barrier, and the stronger the modulation
malized withc/d and the power is normalized with that emitted in (grating strengthis. Note the different scales fay=0.1 (right,
free spaceu?w?3c®. The dipole is taken to be parallel to the dashed lingsand g=0.9 (left, solid lineg. The inset amplifies the
barriers ¢#=0), located midway between two barrigtsp), at one-  high-frequency region fog=0.9.
third of the separatiofmiddle), and at one-fourth of the separation

(bottom) from either side. Two grating strengths are consideged: . . . . -
—0.1 (weak modulationandg= 0.9 (strong modulation Discon- to derive this value from Eq32). It is notable that it coin

tinuities in the slope occur at the band edgfes k=0, namely, cides with our result in the limiy— O, irrespective ofy and

axial propagation Also, notable enhancemer®2) is obtained ~ Xo- Apparently, for very large frequencies—and very small
for low frequencies. wavelengths—the wave “sees” the barriers as infinitely

separated, which amounts to the same as no barriers at all
The power spectrum is a succession of more or less shai=0).
minima and maxima. Many of these occur at or near the |n Fig. 3 we show how the radiated power changes as the
frequenciesod/c=mn, wherenis an integer, independently dipole approaches the barriegz=0.1d andx,=0.01d. For
of g andxo. We recall that, for the Dirac comb model, the 4—0.1 a dramatic change occurssasis reduced from 0d
upper band-gap edgeat k,=0) happen to be “pinned” at {5 0.01d, namely, the zigzagging power spectrum gives way

precisely these frequencies. Some of the sharp peaks corrgy o strong peak at a normalized frequency of about The
spond to lower band-gap edges. Thus, the abrupt changes ak already appears for a modest distange:0.1; it also

the power spectrum seem to be associated with the changgs: .
in density of states as the threshold between a pass band ap)glfisot% f) rr:rl:ghelgzverrof\r,(vaguben;y.fa\(/:iﬁ/ :?g z: tor(;[)r:;aml;?glner
a stop band is traversed. We reda@ée Fig. 4 of Ref{36], o~ P 9 y PP Y,

which corrects Fig. 5 of Ref35]) that the density of states, and :hetrr)]owet:] rzt;u_jla:re]d by the dlpTorI]e 'S m?r(;e than ?[O(i t|mtﬁst
indeed, exhibits discontinuities of the slope at the band-gaSrea erthan thatin the vacuum. 1he Inset demonstrates tha
edges. Nevertheless, the power spectrum depends strongiye" for !arge fr_equenmes, the OSC|IIat_|ons related to the band
on the position of the dipole while, of course, the density ofedges still continue, although on a minor scale.

states is independent af. The differences are seen to be  Finally, in Fig. 4 we show the power emitted by a gas of
specially notable for lower frequencies. dipoles between the barriers. The calculation is based on Eq.

For x,=d/2 the pattern is repeated with a perios, how-  (36). The characteristic slope discontinuities are still notable,
ever, no repetitive behavior is apparent fgr=d/3 andx, although not as pronounced as in Fig. 2Xgr=0.5, say. Itis
=d/4. The amplitude of the fluctuation is attenuated as thénteresting that the smoothed-out power increases linearly
frequency increases, and seems to approach the highith frequency, and much more rapidly fge=0.9 than for
frequency limitP/Py— 3/4. Unfortunately, we were unable g=0.1.
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189 Namely, at relatively low frequencies, a large peak appears
16 g=0.9 (see Fig. 3. The smallerx, and the greateg, the greater is
14 - the enhancement of the emitted power. For example, if
12 =0.0d and g=0.9, the enhancement factor is more than
% 10.] 200—a powerful Purcell effect. At this point it should be
Q. ] emphasized that, in our calculation, the dipole is permitted to
a 81 radiate in all directions in space; the associated D®isich
5 6 is also a result of integration over all spatial directipf&5]
Q 44 is notlarge at the band edges, but only exhibits slope discon-
o 2 tinuities. This situation contrasts with the DOS for propaga-
g o4 tion limited to the SL axig20], which is inversely propor-
o . . S M tional to the group velocitylw/dkg and, hence, is infinitely
% - large at the band edges. In the present case, the large power
@ 0467 enhancement in Fig. 3 doe®t seem to be related to the
o 0.44 - slope discontinuities of the DOR5].
<C 0.42- g=0.1 We offer atentativeinterpretation for this unexpectedly
T 0.40 - large power emission for dipole positions that are close to a
[0)] E . . . .
N 0.38 - barrier. It turns out that a disproportionately large contribu-
‘® 0.36 4 tion to the power integral Eq.32) comes from “terminal”
§ 0.34 values of the parallel component of the wave vector. By this
‘23 0.32 ] we mean, values d{; very near to the maximum possible for
0.30 -] a given frequency; see Fig. 2 of RdB5]. Now, in this
0.28 ] regime,k; is actually greater than the vacuum wave vector
— T T T T T T 1 wlc, as discussed in Reff35]; this is known to occur for a
on 2n 4n [ 8n 10w 12w 14w 167

Normalized Frequency wd/c

realistic SL as well. As a resulK, as given by Eq(12), is
purely imaginary for a small range df, which, however,
contributes substantially to the total power. Then, according

FIG. 4. Power spectrum for a gas of dipoles, for two values ofyg Eq. (14), in this range the electric field is evanescent: it
the grating strength.

In this paper we have investigated the power emitted by
point dipole embedded in a model SL. An important featur
of our work is the fact that the dipole is permitted to radiate
in all spatial directions, although here the polarization was
restricted to the TE mode. Because a SL does not have a

VIll. CONCLUSION

e

decays exponentially away from the barriers. So, the cou-
pling of the dipole to the field is expected to increase rapidly
as the dipole approaches a barrier. This argument possibly

gxplains the behavior seen in Fig. 3.

Admittedly, the Dirac comb model that we employed,
does not resemble a real SL. Nevertheless, let us recall that
this model corresponds to a limiting case of the ordinary SL:
very large dielectric constar (of the higher-index layejs

and very small thicknesA of these layers, the ratieA/d

omnidirectional PBG, the radiation may behibited in cer-
tain frequency regions, but never prohibited. Indeed, we fin

(see Fig. 2 that the radiated power is finite for all frequen-

cies. What is more, for some frequency ranges, the power i22V€ Sémiquantitative validity. What is more, we believe that
substantially enhanced in comparison to radiation in freeourquahtatlv_ef.lndmgs are applicable to the power sp.ectra of
space. For dipole positions that aret very near to the bar- real SLs. This is because the TE band structure, derived from

riers, the power spectra oscillate around the free-space valdBe Dirac comb model, is qualitatively very similar to that

(for TE polarization with an attenuating amplitude as the obtained from a r_ealistic modeling of the $85]'.S°.' we
frequency increases. The most notable property of thes&Xpect that experimental spectra, for TE polarization, will
xhibit slope discontinuities at the band edges for on-axis

spectra are the sharp discontinuities in slope. These occur’

predominantly, at frequencies that coincide with the banoo_ropagation, and that they will depend substantially on the

edges for on-axis propagation; previously we noted the Sam@pole position—including considerable enhancement of the

aspect of the DOS specifas]. However, this is as far as the emitted power. Computer simulation, as well as experimen-
analogy goes. The slope discontinuities in the power spectrtft'on’ would be desirable.
do not show up at all the band edges, occasionally they
do not coincide with a band edge, and these spectra
depend strongly on the dipole positiep and on the grating We wish to thank Jorge R. Zurita for helpful discussions.
strengthg. This work was supported by CONACyYT Grant No. 32191-E.
The behavior of the power spectrum undergoes a draalso, I.A.R. and A.S.S. were financially supported by
matic, qualitative change as the dipole approaches a barricEONACyYT and Sistema Nacional de Investigadores.

(peing a finite numbefg) [35]. If these requirements are sat-
isfied (say, withe=d/A =15), then we expect our results to
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