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Dipole radiation in a one-dimensional photonic crystal: TE polarization
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We study the power emitted by an oscillating dipole in a superlattice~SL! modeled by means of a periodic
distribution of Diracd functions~Dirac combSL!. The radiation is permitted to propagate in all directions in
space; however, it is restricted to the transverse electric~TE! polarization mode. The calculation is based on a
classical theory of radiation in nonuniform dielectric media by Dowling and Bowden@Phys. Rev. A46, 612
~1992!#. The emitted power is derived in terms of a single integral, with no approximations. A SL has no
omnidirectional photonic band gaps, and therefore the power is always finite. The power spectrum exhibits
slope discontinuities, which occur at the band edges for on-axis propagation. It also depends strongly on the
dipole’s position in the SL and on thegrating strengththat characterizes the Dirac comb model. The power
peaks for low frequencies, and there can be large enhancement of emission as compared to free space. The
closer the dipole is to abarrier ~Dirac d! and the greater the grating strength, the stronger the enhancement is.
These conclusions are expected to be relevant for a real SL.
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I. INTRODUCTION

In a pioneering paper, Purcell pointed out that the sp
taneous emission~SE! by an atom is altered if the radiate
field is constrained to satisfy a set of boundary conditio
@1#. In other words, the lifetime of an excited atomic sta
changes if the atom is located in a material environme
rather than radiating in free space. Consider, for example
atom enclosed in a loss-free cavity. It is well known th
such a cavity supports a series of eigenmodes whose ch
teristic frequenciesv1 ,v2 ,... depend only on the geometr
of the cavity. If none of these frequencies matches the~free-
space! emission spectrum of the atom, then it will find n
eigenmode to decay into. The atom will then be unable
radiate. More generally, if the material surroundings are s
that the modal density~or density of optical states! vanishes,
then the spontaneous emission is prohibited. If the densit
states~DOS! is merely reduced with respect to the free spa
value, then the spontaneous emission is inhibited. On
other hand, an enhancement of the emission is also feas
This is the essence of the Purcell effect, and it has stimula
the development of cavity quantum electrodynamics~QED!
dedicated to radiative properties of atoms between two m
rors or within other cavities. We quote two reviews of th
field @2# and a few recent papers@3#.

Photonic crystals~PCs! @4# are novel, composite materia
that offer an attractive opportunity for studying SE by atom
fluorescence by dyes, radiative recombination of electr
and holes, etc., in a very low DOS environment. A PC is
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periodic array of~usually! two dielectric materials. In the
case of a three-dimensional~3D! PC, appropriate geometrica
characteristics and sufficiently large dielectric contrast
tween the two constituent materials may result in an om
directional photonic band gap~PBG!. This is to say that,
within the PBG, light is prohibited to propagate in whatev
direction. Strictly speaking, this would require perfect pe
odicity ~including an infinite PC! and lossless materials. Un
der such ideal conditions, as proposed by Yablonovitch,
due to electron-hole recombination in a semiconducto
incorporated within the PC—could be prohibited provid
that the recombination frequency~which is just the semicon-
ductor’s energy band gap, divided by Planck’s constant! falls
within the PBG@5#. This could greatly improve the perfor
mance of semiconductor lasers and other devices@5#. It is
worth noting that the spontaneous emission rate due
electron-hole recombination in a GaAs film was found
increase or decrease markedly, depending on whether
substrate dielectric had a higher or lower refractive ind
than that of GaAs@6#.

John and Wang studied SE by an atom whose transi
frequency lies near a PBG@7#. Their QED theory predicts
bound states of photons to hydrogenic atoms, nam
‘‘dressed atoms.’’ In the vicinity of a photonic band edg
the excited atomic state undergoes an anomalous Lamb
~due to the electron’s interaction with the radiation field! and
splits into a doublet. One member of this doublet gives r
to the aforementioned ‘‘dressed atom,’’ with the electroma
netic energy decaying exponentially away from the ato
The other member leads to fluorescence which, accordin
Kofman et al., is characterized by the occurrence of bea
corresponding to a non-Lorentzian emission spectrum@8#.
Several other studies explore the decay of a two-level a
in the presence of a PBG@9#. The radiative coupling of two

f
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atoms or dipoles has been investigated by Kurizki@10#,
Dowling and Bowden@11#, and Wang@12#. Further, John
and Quang found that the collective SE byN two-level atoms
inside a PC leads to the localization of superradiance ne
PBG @13#. It was also shown by John and collaborators t
the SE by a three-level atom, with one resonant freque
near a PBG edge, can be coherently controlled; this may
relevant for an optical memory device on the atomic sc
@14#. Huanget al. investigated dressed states for a multilev
atom and localized field in a PC@15#.

The aforementioned theoretical work@7–15# considers,
by and large, strong coupling between the atom inside the
and the electromagnetic field. As a result, so-calledRabi os-
cillations take place: for a two-level atom in a cavity, th
probability of either state being occupied depends harm
cally on time~the period of the oscillations is theRabi fre-
quency! @2,16#. What happens~in the idealized absorption
less situation! is that the excitation energy is exchang
periodically between the atom and the field. Such a stat
affairs requires complicated QED theories, complete w
creation and destruction operators. On the other hand,
experiments performed to date on PCs~see below! seem to
involve only weak interaction between the emitting partic
and the field. Then the so-called Weisskopf-Wigner appro
mation @17# is applicable, which results in great simplifica
tion, namely, the decay process becomes exponential in t
This point was emphasized by Liet al. @18#, who very re-
cently computed the ‘‘local’’ DOS~that incorporates the
atom-field interaction! for a two-level atom embedded in
3D PC. On the basis of realistic band-structure calculatio
the authors concluded that the local DOS varies slowly n
the band-gap edges—in contrast to the previous isotro
model @7#. This behavior seems to justify the Weisskop
Wigner approximation for 3D PCs. Glauber and Lewenst
used this approximation in order to calculate the rate
spontaneous emissiongs of an atom embedded in a nonun
form dielectric medium, characterized by an arbitra
position-dependent dielectric constante(r ) @19#. It turns out
that the emitted power is independent of Planck’s const
hence it actually corresponds to semiclassical radia
theory. Then one can expect that a classical theory of ra
tion by a point dipole, with its dipole momentm replaced by
the atomic dipole transition matrix element^muer un& will
lead to the very same results. Such a theory, for arbitr
e(r ), was developed by Dowling and Bowden~DB! @20#
and, indeed, the replacementm→^muer un& in Eq. ~26! of
Ref. @20# leads to the expression for\v0gs derived by
Glauber and Lewenstein@see Eq.~6.11a! of Ref. @19## within
a numerical factor.

DB applied their theory to the calculation of the pow
emitted by a point dipole located between a pair of perf
mirrors and also to a dipole embedded in a superlattice~SL!
that was modeled by means of Dirac-delta functions~Dirac
comb model!. In both examples the radiation was assumed
propagate in the axial direction, corresponding to normal
cidence@20#. The calculation for dipole radiation within th
mirrors was generalized by Alvarado-Rodriguezet al. to al-
low for arbitrary direction of propagation and polarizatio
@21#. Further, Tocciet al. @22#, Fogelet al. @23#, and Dowl-
05661
r a
t
y

be
e
l

C

i-

of
h
he

s
i-

e.

s,
ar
ic

n
f

,

t;
n
a-

ry

t

o
-

ing @24# applied transfer matrix methods to the DB result
order to calculate the power emission by a dipole in a fin
SL. Tocci et al. also compared their calculations to spon
neous emission spectra of a GaAs thin film at the middle
a AlAs/AlxGa12xAs SL. They obtained reasonable agre
ment and enhancement by a factor 3.5 near the phot
band edge@22#. We also mention early work by Bykov@25#
and calculations by Russell,et al. @26# that shows how SE
can be controlled by placing a dipole inside a layer of lo
index material, built into a dielectric SL~both TE and TM
modes are considered!. Babiker and collaborators considere
a SL made up from dispersive layers, modeled so as to a
for the presence of phonon polaritons@27#. They found that
the dipole relaxes by exciting TM-polarized polaritons loc
ized at the interfaces between the layers.

Turning to PCs of 2D periodicity, Suzukiet al.embedded
a radiowave dipole oscillator in a periodic array of dielect
rods@28#. They obtained quantitative agreement between
measured emitted power and a calculation based on the
theory. Recently, SE from hexagonal microcavities s
rounded by triangular arrays of holes~in a membrane struc
ture! was observed by Leeet al. @29# and by Boroditsky
et al. @30# at a wavelength;1.5 mm. In both, rather similar
experiments, the active regions—InxGa12xAs quantum wells
~that constituted the cavity!—were pumped by lasers an
photoluminescence spectra were taken for light emitted p
pendicular to the membranes. Twofold@29# and sixfold@30#
enhancements of the light extraction efficiency were dem
strated in comparison to the unpatterned membrane. B
et al. also observed strong enhancement for GaInAsP mic
column arrays@31#.

As for 3D structures, Suzuki and Yu modified the D
method in order to calculate the emitted power of a dip
inside a PC with face-centered cubic structure@32#. The re-
sults show prohibition of emission in the PBG and al
strong enhancement near the band edges. On the experi
tal side, there are many papers on self-organizing mic
spheres, made of polystyrene or silica~artificial opal!, that
crystalize in diverse space lattices@33#. These dielectric ma-
terials have small dielectric constants, so there is no omn
rectional PBG, but only a pseudogap. Therefore, when do
with a fluorescent dye or a semiconductor, these PCs exh
merely moderate inhibition of SE. What makes them attr
tive is that this occurs in the visible regime.

In this and the next paper@34# we calculate the powe
emission, by an oscillating point dipole, in a perfect SL. T
SL is modeled by means of a periodic distribution of Dir
delta functions—the Dirac comb model. As mentioned b
fore, this elegant model was first introduced in the DB pa
@20#. There, however, the light was restricted to propag
along the SL axis. In practice, a dipole or an atom will ra
ate in all spatial directions, and here we generalize the
calculation so as to allow for this feature. We employ the D
theory, which expresses the emitted power in terms of
normal modes of the system. For a SL, these are the TE
TM modes; the corresponding eigenvalue problems for
Dirac comb model were solved by Alvarado-Rodriguezet al.
@35# and Zurita and Halevi@36#. In these two papers we
derived the band structures, fields, equifrequency surfa
3-2



b
TE

le
e
s
ic
o

ar

n
ul
re
in
pe
le
re

or
l

l-

a

a

d

to
s

th

ua-
f

lo-

ke

Eq.
ole
ted

the

fore
be
lar-
ibu-
to

the

r-

DIPOLE RADIATION IN A ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 63 056613
and the DOSs for the two polarizations. These results will
used in the calculation of the power emitted into the
modes~this paper! and into the TM modes~next paper! @34#.
We also calculate the power emitted by a gas of dipo
within the superlattice. In general, the calculation of pow
emission by a dipole or an atom embedded in a PC i
difficult problem. The Dirac comb model, while unrealist
from the quantitative point of view, has the advantages
simplicity and transparency. In fact, exact final results
derived in terms of a single integration.

In Sec. II we briefly review the DB theory for radiation i
an arbitrarily inhomogeneous dielectric medium. The res
of Ref. @35# for the TE modes of the Dirac comb SL a
recapitulated in Sec. III. The electric field is normalized
Sec. IV, and in Sec. V we calculate the emitted power. S
cial cases, including the power radiated by a gas of dipo
are considered in Sec. VI. Our numerical results are p
sented and analyzed in Sec. VII.

II. POWER EMISSION IN AN INHOMOGENEOUS
MEDIUM

In this section we recapitulate the modal radiation the
of Glauber and Lewenstein@19#, according to its classica
rendition by Dowling and Bowden@20#. We start with the
wave equation for the vector potentialA(r ,t). In the absence
of sources, it is

“3“3A1
e~r !

c2

]2

]t2 A50. ~1!

Here the dielectric constante(r ) is a function of the position
vector r due to the inhomogeneity. The vector potential fu
fills the Coulomb or transverse gauge

“•@e~r !A#50 ~2!

rather than“•A50 as in an homogeneous medium. For
given material geometry, we can describe the field therein
a linear superposition of normal modes or eigenmodes. E
mode may be labeled according to its wave vectork and
polarization indexp. So, the total monochromatic fiel
present in the medium is given by

A~r ,t !5(
p

(
k

akp~r !exp~2 ivkpt !d~vkp2v0!. ~3!

Herevkp andakp(r ) are the eigenfrequency and eigenvec
of thek,p mode. The Diracd function ensures that the field
oscillate only at source frequenciesv0 that the inhomoge-
neous medium can admit, namely the eigenfrequenciesvkp .
These normal modes are monochromatic solutions of
Helmholtz equation, obtained by substituting Eq.~3! in Eq.
~1!

“3“3akp~r !2
vkp

2

c2 e~r !akp~r !50. ~4!

The eigenvectorsakp(r ) also have to fulfill the normalization
and closure conditions given by the following equations:
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!

~r !•akp~r !5d~k2k8!dpp8 , ~5!

(
p51

2 E d3kakp
! ~r 8!akp~r !5dJ~r2r 8!. ~6!

Note that both sides of the last equation are dyadics. Eq
tions ~5! and~6! ensure that theakp(r ) are a complete set o
orthonormal functions.

Next, the inhomogeneous wave equation for a source
calized in space must be solved,

“3“3A1
e~r !

c2

]2

]t2 A5
4p

c2 J. ~7!

HereJ(r ,t) is a current density corresponding to a pointli
dipole, namely,

J~r ,t !5v0m cos~v0t !d~r2r0!U~ t !. ~8!

The dipole has a momentm, is located at the pointr0 , is
oscillating with frequencyv0 , and is turned on at the time
t50, as evident from the step functionQ(t). Equation~7!
can be solved in terms of the normal modes as given in
~3!, and then one can calculate the work done by the dip
current against the ambient electric field to find the radia
power. Following the procedure in Ref.@20#, the power ra-
diated by the point dipole in the steady state is

P5p2v0
2m2(

p51

2 E d3kuakp~r0!•m̂u2d~vkp2v0!, ~9!

wherem̂ is a unit vector parallel tom. Equation~9! implies
that the power emitted by the point radiator depends on
normal modes being excited. The Diracd function selects the
modes that have the frequency of the radiator and there
contribute to the radiated power. The total power can
decomposed into independent contributions from each po
ization mode. Hence one can study separately the contr
tions p5TE andp5TM. Because this paper is restricted
the former case, we can drop the mode indexp.

III. TE NORMAL MODES

We consider a dielectric SL modeled by means of
Dirac comb@20#, Fig. 1:

e~x!5e01gd (
n52`

`

d~x2nd!. ~10!

Here d is the period of the lattice,g is the ‘‘grating
strength,’’ ande0 is the dielectric constant between the ‘‘ba
riers’’ located atx5nd. Formerly we derived the following
dispersion relation for the TE propagation modes@35#:

coskBd5cosKd2a~v,K !sinKd, ~11!

K5S v2

c2 e02ki
2D 1/2

, ~12!
3-3
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a~v,K !5
gdv2

2c2K
. ~13!

Equation~11! is an implicit equation for the frequency,vk
5v(kB ,ki), as a function of the Bloch vectorkB and the
wave vector componentki in the plane parallel to the barri
ers. The corresponding band structure reasonably resem
that obtained from the realistic model of the SL, see Fig. 2
Ref. @35#.

The electric field of the TE mode is perpendicular to t
SL axis and was found to be

Ek
~n!~x!5einkBd@AeiK ~x2nd!1Be2 iK ~x2nd!#ei ~kyy1kzz!êk ,

~14!

êk52 ŷ cosf1 ẑsinf. ~15!

Hereêk is the polarization vector, that is, it is a unit vector
the yz plane that is perpendicular toki , which forms an
anglef with the z axis. This equation gives the field at an
point x between thenth and the (n11)th barriers, namely,

nd,x,~n11!d. ~16!

Finally, the amplitudesA andB are related as

B

A
52

12ei ~K2kB!d

12e2 i ~K1kB!d . ~17!

Note thatK, defined by Eq.~12!, may have imaginary, a
well as, real values. IfK5 i uKu, as occurs for sufficiently
large values ofki , then in Eq.~11! the trigonometric func-
tions of Kd must be replaced by the corresponding hyp
bolic functions ofuKud. The parametera(v,K), Eq. ~13!,
becomesa(v,uKu). In this regime of imaginaryK, the elec-
tric field, Eq. ~14!, has evanescent behavior exp(6uKux).

IV. MODE NORMALIZATION

To proceed with the power calculation the eigenvectors
Eq. ~14! have to be normalized. Now, the formula for th
power, Eq.~9!, requires the vector potential; we relate it
the electric field using the gauge Eq.~2! which, in the ab-
sence of charges, implies that the scalar potential vanis
Then

FIG. 1. Oscillating dipole in a Dirac comb superlattice; the
electric constant is infinite on the periodically situated planex
5¯2d,0,d,..., and it isequal toe0 between these planes. Th
dipole momentm lies in thexy plane and forms an anglec with the
y axis; the point dipole is distancedx0 from the origin.
05661
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Ek~r !5 i
vk

c
ak~r !, ~18!

and using Eq.~14! we have that

ak
~n!~r !52 i

c

vk
einkBd@AeiK ~x2nd!

1Be2 iK ~x2nd!#ei ~kyy1kzz!êk. ~19!

Written out explicitly, the normalization condition Eq.~5!
becomes

¯1E
2`

`

dydzE
2d

0

dxe0ak8
~21!* •ak

~21!

1E
2`

`

dydzE
0

d

dxe0ak8
~0!* •ak

~0!

1E
2`

`

dydzE
d

2d

dxe0ak8
~1!* •ak

~1!1¯5d~k2k8!.

~20!

By using the phase factor exp(inkBd) in Eq. ~19!, this can be
reduced to an expression that involves only the celln50,
and we get

e0 (
n52`

`

ein~kB82kB!dE
2`

`

dydzE
0

d

dxak8
~0!* •ak

~0!5d~k2k8!.

~21!

Next we substitute Eq.~19! in Eq. ~21!. The integrals overy
andz lead to 2pd(ky2ky8) and 2pd(kz2kz8), respectively.

BecauseSn52`
` ein(kB2kB8 )d52pd(kB2kB8 )/d we obtain, for

real K, that

~2p!3

d

c2

vk
2 e0 E

0

d

dx@ uAu21uBu212 Re~A* Be22iKx!#

3d~kB2kB8 !d~ky2ky8!d~kz2kz8!5d~k2k8!. ~22!

Canceling out the Diracd functions and integrating we
find that

uAu21uBu212 ReFA* B
e22iKd21

22iKd G5
vk

2

~2p!3c2e0
.

~23!

Then substituting Eqs.~11! and ~17! into Eq. ~23! the result
is

uAu25
vk

2

16p3c2e0

sinKd1a cosKd1sinkBd

sinKd1a cosKd2a
sinKd

Kd

, K real.

~24!
3-4
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If, on the other hand,K is imaginary, then we must re
place exp(6iKx) in Eq. ~19! by exp(7uKux). Retracing the
steps leading to Eq.~22!, the expression in the square brack
is replaced by

@ uAu2e22uKux1uBu2e2uKux12 Re~A* B!#.

After integration overx, we obtain

uAu25
vk

2

16p3c2e0

a~sinhuKud1coshuKud!

sinhuKud2a coshuKud1a
sinhuKud

uKud

,

K imaginary. ~25!

Herea is given by Eq.~13!, with the replacementK→uKu.
We note that Eq.~25! cannot be obtained from Eq.~24! by
the substitutionK5 i uKu.

V. EMITTED POWER

To calculate the power radiated into the TE polarizat
mode, we use Eq.~9!. Now we take the medium between th
barriers to the vacuum (e051). This is in order to avoid the
complications due to thelocal fieldacting on a dipole within
a dielectric medium. Without loss of generality, we assu
that the dipole moment is parallel to thexy plane, namely,
m̂5 x̂ sinc1ŷ cosc, and that it is located within the cell la
beled n50 at a distancex0 from the barrier~see Fig. 1!.
With the help of the Eqs.~19! and ~15! we find that the
dipole-field interaction is given by

uak~r0!•m̂u25
c2

vk
2 @ uAu21uBu2

12 Re~A* Be22iKx0!#cos2 c cos2 f.

~26!

In cylindrical coordinates k5(ki ,f,kB) and d3k
5(kidf)dkidkB . Then Eq.~9! becomes

P5p2c2m2 cos2 cE dkiki E dv
dkB

dv E df cos2 f@ uAu2

1uBu212 Re~A* Be22iKx0!#d~vk2v0!. ~27!

For the Diracd function in the integrand we use the proper

d„f ~x!…5(
xn

d~x2xn!

ud f /dxnu
,

wherexn are the zeros of the functionf (x). For a givenki

there are two values6kB for which vk5v0 ~see Fig. 3 of
Ref. @35#!. Then integrating overkB and the anglef, we get

P52p3c2m2 cos2 cE dkikiUdkB

dv0
U@ uAu21uBu2

12 Re~A* Be22iKx0!#v0
. ~28!
05661
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Here ‘‘v0’’ means that the integrand is evaluated on t
equifrequency surface. The derivative preceding the squ
bracket is found to be

dkB

dv
5

]kB

]v U
K

1
]kB

]K U
v

]K

]vU
ki

5
v

c2K

F„v,K~v,ki!…

sinkBd
, ~29!

F„v,K~v,ki!…5~11g!sinKd

1a~v,K !S cosKd2
sinKd

Kd D . ~30!

Next we evaluate the expression in the square brac
assuming thatK is real. Using Eqs.~23! and ~24!, after te-
dious algebra we get

@ uAu21uBu212 Re~A* Be22iKx0!#

5
v2

8p3c2

sinKd22a sinKx0 sinK~d2x0!

S 12
a

KdD sinKd1a cosKd

. ~31!

In the regime whereK is imaginary, we have to use Eq
~25! instead of Eq. ~24!. The algebra is different
nevertheless—rather surprisingly—the result is the same
Eq. ~31! with the replacementK→ i uKu. Hence it is not nec-
essary to separate the integration in Eq.~28! into the regions
of ki smaller and greater thanv/c. Then substituting Eqs
~29! and ~31! in Eq. ~28!, our final result is

P5
m2v0

3

4c2 cos2 cE dki

kiuF„v0 ,K~v0 ,ki!…u
uK sinkBdu

3
sinKd22a sinKx0 sinK~d2x0!

S 12
a

KdD sinKd1a cosKd

. ~32!

Here K, a, and F are defined, respectively, by Eqs.~12!,
~13!, and ~30! with v5v0 , and sinkBd is calculated from
Eq. ~11!. The Bloch wave vectorkB must be real, which is to
say that the region of integration must be limited to the v
ues ofki within the pass bands. Note that the calculation,
to this point, is analytic, and that the desired power is giv
in terms of a single integration.

Equation~32! gives the powerP radiated by a dipole of
frequencyv0 , into the TE modes of our model SL. Thi
formula rendersP as a function ofv0 , the grating strengthg
that characterizes the SL, the distance of the dipolex0 from
one of the ‘‘barriers,’’ and the anglec that the dipole forms
with the plane of the barriers. This last dependence is gi
simply by the factor cos2 c outside the integral. Then, as ca
be expected, no TE radiation is emitted if the dipole is p
allel to the SL axis. It is convenient to work with the no
malized dipole positionx0 /d, the normalized frequency
v0d/c, and the power normalized with the power emitted
a dipole in free space (3c3/m2v0

4)P.
3-5
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VI. SPECIAL CASES

A. The limit g\0

This limit corresponds to the empty-lattice model, and
dipole is actually radiating in free space. Forg→0 we have
that a→0 and sinkBd→sinKd. The equifrequency surfac
becomes a sphere of radiusuku5v0 /c, and the integral of
Eq. ~32! reduces to

E dki

ki

K
5E

0

v0 /c

dki

ki

Av0
2/c22ki

2
5

v0

c
.

Then the normalized power becomes

P

P0
→ 3c3

m2v0
4

m2v0
3

4c2 cos2 c
v0

c
5

3

4
cos2 c. ~33!

In the planned sequel@34# to this paper we will see that, fo
c50 and c5p/2 this just completes the total—TE plu
TM—radiated power toP/P051, as it should be.

B. The limit v\0

In this low-frequency limit, we can see from the ban
structure~Fig. 2 of Ref. @35#! that ki and kB are also very
small. Therefore, v0d/c!1, kBd!1, and Kd!1, and
F„v0 ,K(v0 ,ki)…>(11g)Kd. Further, a series expansion
the dispersion relation~11! reveals that, in this limit,

kB
21ki

25~e01g!v2/c2. ~34!

The equifrequency surfaces are again spheres, now of ra
(e01g)1/2v/c. Then ~with e051) the integral of Eq.~32!
reduces to

~11g!E dki

ki

kB
5~11g!E

0

A11g~v0 /c!
dki

3
ki

@~11g!v2/c22ki
2#1/2

5~11g!3/2
v0

c
.

Taking into account the prefactor of the integral~32! and the
normalizing divisorP0 @see Eq.~33!# the result is

P

P0
→ 3

4
~11g!3/2cos2 c. ~35!

This, of course, reduces to Eq.~33! for g→0.

C. Gas of dipoles

Here we assume that a random gas of radiating dip
fills the spaces between the barriers. In order to obtain
radiated power per dipole, we have to average over all p
05661
e

ius

s
e
s-

sible directions in space of the dipole momentm, that is over
the angles. This simply replaces the cos2 c in Eq. ~32! by its
volumeaverage1

3.
We also average over the dipole positionsx0 . For the

position-dependent factor in Eq.~32! we find that

^sinKd22a sinKx0 sinK~d2x0!&

5sinKd1a cosKd2a^cosK~d22x0!&

5sinKd1a cosKd2a sinKd/Kd.

This just cancels out a factor in the denominator of the in
grand. Then the final result for the radiated power per dip
is

P

P0
5

1

4

c

v0
E dki

kiuF„v0 ,K~v0 ,ki!…u
uK sinkBdu

. ~36!

VII. RESULTS AND DISCUSSION

The integration in Eq.~32! must be carried out carefully
for every value ofv0 , in coordination with the correspond
ing equifrequency surface. These are given in Ref.@35# ~Fig.
3! for g50.1 and four selected frequency values. Of cour
the integration is to be interrupted whenever a gap occur
ki , and the limiting points must be approached carefully,
small steps. This is because sinkB d in the denominator of the
integrand vanishes at all the band edges. Nevertheless, th
a weak singularity, and the integral converges. Specifica
for a givenv, one or more bandsvn(ki) are traversed; thes
are separated by band gaps, namely, regions ofki for which
the characteristic equation has no real solutions for the Bl
vector kB ~see Fig. 2 of Ref.@35#!. The integration is then
performed separately for every band, as defined by the in
(ki) and final (kf) values ofki for that bandn. We have
divided the ranges@kf

(n)2ki
(n)#d into 105 equal intervals

(Dki); the integration was executed from the valueki
(n)d

1Dki to the valuekf
(n)d2Dki ~the pointski

(n)d and kf
(n)d

themselves were excluded because of the aforementio
singularity!.

In Fig. 2 we plot the normalized~to free space! power
radiated by a point dipole whose dipole momentm is parallel
to the barriers (c50). Three positions of the dipole ar
considered, namely, when it is at one-half, one-third, a
one-quarter of the barrier separationd. For each of these
cases the grating strengthg assumes two values 0.1 and 0.
giving rise to relatively weak and to rather strong Bra
diffraction, respectively. First let us note that, in comparis
to the caseg50.9, the pattern is rather flat forg50.1, and
oscillates near the valueP/P050.75, independently ofv and
x0 . This value, in fact, was derived analytically in the lim
g→0 in the previous section. In the same section we a
found the low-frequency limitP/P050.75(11g)3/2 for c
50 which, forg50.1 andg50.9, assumes the values 0.86
and 1.964, respectively. In Fig. 2 we see that these limits
obeyed, indeed, irrespective of the value ofx0 .
3-6
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The power spectrum is a succession of more or less s
minima and maxima. Many of these occur at or near
frequenciesvd/c5pn, wheren is an integer, independentl
of g andx0 . We recall that, for the Dirac comb model, th
upper band-gap edges~at ki50) happen to be ‘‘pinned’’ at
precisely these frequencies. Some of the sharp peaks c
spond to lower band-gap edges. Thus, the abrupt chang
the power spectrum seem to be associated with the cha
in density of states as the threshold between a pass band
a stop band is traversed. We recall~see Fig. 4 of Ref.@36#,
which corrects Fig. 5 of Ref.@35#! that the density of states
indeed, exhibits discontinuities of the slope at the band-
edges. Nevertheless, the power spectrum depends stro
on the position of the dipole while, of course, the density
states is independent ofx0 . The differences are seen to b
specially notable for lower frequencies.

For x05d/2 the pattern is repeated with a period 2p, how-
ever, no repetitive behavior is apparent forx05d/3 andx0
5d/4. The amplitude of the fluctuation is attenuated as
frequency increases, and seems to approach the h
frequency limitP/P0→3/4. Unfortunately, we were unabl

FIG. 2. TE-polarized power radiated by a dipole in the config
ration of Fig. 1, as a function of frequency. The frequency is n
malized withc/d and the power is normalized with that emitted
free space,m2v4/3c3. The dipole is taken to be parallel to th
barriers (c50), located midway between two barriers~top!, at one-
third of the separation~middle!, and at one-fourth of the separatio
~bottom! from either side. Two grating strengths are consideredg
50.1 ~weak modulation! andg50.9 ~strong modulation!. Discon-
tinuities in the slope occur at the band edges~for ki50, namely,
axial propagation!. Also, notable enhancement (P*2) is obtained
for low frequencies.
05661
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to derive this value from Eq.~32!. It is notable that it coin-
cides with our result in the limitg→0, irrespective ofg and
x0 . Apparently, for very large frequencies—and very sm
wavelengths—the wave ‘‘sees’’ the barriers as infinite
separated, which amounts to the same as no barriers a
(g50).

In Fig. 3 we show how the radiated power changes as
dipole approaches the barrier:x050.1d andx050.01d. For
g50.1 a dramatic change occurs asx0 is reduced from 0.1d
to 0.01d, namely, the zigzagging power spectrum gives w
to a strong peak at a normalized frequency of about 12p. The
peak already appears for a modest distance,x050.1; it also
shifts to a much lower frequency. Very near to the barr
(x050.01) thepeak grows by a factor 30 approximatel
and the power radiated by the dipole is more than 200 tim
greater than that in the vacuum. The inset demonstrates
even for large frequencies, the oscillations related to the b
edges still continue, although on a minor scale.

Finally, in Fig. 4 we show the power emitted by a gas
dipoles between the barriers. The calculation is based on
~36!. The characteristic slope discontinuities are still notab
although not as pronounced as in Fig. 2 forx050.5, say. It is
interesting that the smoothed-out power increases line
with frequency, and much more rapidly forg50.9 than for
g50.1.

-
-

FIG. 3. As Fig. 2, for dipole positions very close to a barrie
The peaks correspond to strong enhancement, which is greate
closer the dipole is to a barrier, and the stronger the modula
~grating strength! is. Note the different scales forg50.1 ~right,
dashed lines! and g50.9 ~left, solid lines!. The inset amplifies the
high-frequency region forg50.9.
3-7
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VIII. CONCLUSION

In this paper we have investigated the power emitted b
point dipole embedded in a model SL. An important featu
of our work is the fact that the dipole is permitted to radia
in all spatial directions, although here the polarization w
restricted to the TE mode. Because a SL does not hav
omnidirectional PBG, the radiation may beinhibited in cer-
tain frequency regions, but never prohibited. Indeed, we fi
~see Fig. 2! that the radiated power is finite for all freque
cies. What is more, for some frequency ranges, the powe
substantially enhanced in comparison to radiation in f
space. For dipole positions that arenot very near to the bar-
riers, the power spectra oscillate around the free-space v
~for TE polarization! with an attenuating amplitude as th
frequency increases. The most notable property of th
spectra are the sharp discontinuities in slope. These oc
predominantly, at frequencies that coincide with the ba
edges for on-axis propagation; previously we noted the s
aspect of the DOS spectra@35#. However, this is as far as th
analogy goes. The slope discontinuities in the power spe
do not show up at all the band edges, occasionally t
do not coincide with a band edge, and these spe
depend strongly on the dipole positionx0 and on the grating
strengthg.

The behavior of the power spectrum undergoes a d
matic, qualitative change as the dipole approaches a ba

FIG. 4. Power spectrum for a gas of dipoles, for two values
the grating strength.
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Namely, at relatively low frequencies, a large peak appe
~see Fig. 3!. The smallerx0 and the greaterg, the greater is
the enhancement of the emitted power. For example, ifx0
50.01d and g50.9, the enhancement factor is more th
200—a powerful Purcell effect. At this point it should b
emphasized that, in our calculation, the dipole is permitted
radiate in all directions in space; the associated DOS~which
is also a result of integration over all spatial directions! @35#
is not large at the band edges, but only exhibits slope disc
tinuities. This situation contrasts with the DOS for propag
tion limited to the SL axis@20#, which is inversely propor-
tional to the group velocitydv/dkB and, hence, is infinitely
large at the band edges. In the present case, the large p
enhancement in Fig. 3 doesnot seem to be related to th
slope discontinuities of the DOS@35#.

We offer a tentative interpretation for this unexpectedl
large power emission for dipole positions that are close t
barrier. It turns out that a disproportionately large contrib
tion to the power integral Eq.~32! comes from ‘‘terminal’’
values of the parallel component of the wave vector. By t
we mean, values ofki very near to the maximum possible fo
a given frequency; see Fig. 2 of Ref.@35#. Now, in this
regime,ki is actually greater than the vacuum wave vec
v/c, as discussed in Ref.@35#; this is known to occur for a
realistic SL as well. As a result,K, as given by Eq.~12!, is
purely imaginary for a small range ofki which, however,
contributes substantially to the total power. Then, accord
to Eq. ~14!, in this range the electric field is evanescent:
decays exponentially away from the barriers. So, the c
pling of the dipole to the field is expected to increase rapi
as the dipole approaches a barrier. This argument poss
explains the behavior seen in Fig. 3.

Admittedly, the Dirac comb model that we employe
does not resemble a real SL. Nevertheless, let us recall
this model corresponds to a limiting case of the ordinary S
very large dielectric constante ~of the higher-index layers!
and very small thicknessD of these layers, the ratioeD/d
being a finite number~g! @35#. If these requirements are sa
isfied ~say, withe5d/D515), then we expect our results t
have semiquantitative validity. What is more, we believe t
our qualitativefindings are applicable to the power spectra
real SLs. This is because the TE band structure, derived f
the Dirac comb model, is qualitatively very similar to th
obtained from a realistic modeling of the SL@35#. So, we
expect that experimental spectra, for TE polarization, w
exhibit slope discontinuities at the band edges for on-a
propagation, and that they will depend substantially on
dipole position—including considerable enhancement of
emitted power. Computer simulation, as well as experim
tation, would be desirable.
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